Equivalence, Négligeabilité

Table des matières

1	Cor	mportement asymptotique des suites	2
	1.1	Relation de négligeabilité	2
	1.2	Relation d'équivalence	4
	1.3	Comparaison de suites usuelles	5
2	Cor	nparaison des fonctions au voisinage d'un point	7
	2.1	Rappels sur les voisinages	7
	2.2	Relation de négligeabilité	8
	2.3	Relation d'équivalence	9
	2.4	Comparaison de fonctions usuelles	11
		2.4.1 Comparaison au voisinage de l'infini	
		2.4.2 Comparaison au voisinage de zéro	

1 Comportement asymptotique des suites

1.1 Relation de négligeabilité

Définition 1.1 : Suite négligeable devant une autre suite

On dit que la suite (u_n) est **négligeable** devant la suite (v_n) s'il existe une suite (ϵ_n) qui converge vers 0 et qui vérifie à partir d'un certain rang

$$u_n = \epsilon_n v_n$$
.

On note : $u_n = o(v_n)$ ou $u_n = o(v_n)$.

On lit (u_n) est un "petit o" de (v_n) au voisinage de $+\infty$.

Exemple 1. Vérifier que $n = o(n^2)$.

Solution.

Exemple 2. Vérifier que $\frac{1}{n^2} = o\left(\frac{1}{n}\right)$.

Solution.

Proposition 1.2: Suite convergente

Soit (u_n) une suite réelle.

$$u_n = o(1) \Leftrightarrow u_n \xrightarrow[n \to +\infty]{} 0.$$

Démonstration. On a simplement $\epsilon_n = u_n$.

Attention, la notation de Landau ("petit o") repose sur un abus d'écriture : $o(w_n)$ ne désigne pas une suite particulière, mais toute suite possédant la propriété d'être négligeable devant (w_n) . Si $u_n = o(w_n)$ et $v_n = o(w_n)$, on n'a pas nécessairement $u_n = v_n$.

Exemple 3. On a $n = o(n^2)$ et $n + 2 = o(n^2)$, cependant $n \neq n + 2$ pour $n \in \mathbb{N}$.

Théorème 1.3 : Caractérisation de la négligeabilité

Si $v_n \neq 0$ à partir d'un certain rang, alors

$$u_n = o(v_n) \Leftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 0.$$

 $D\acute{e}monstration$. Puisque $v_n \neq 0$ à partir d'un certain rang, on peut écrire :

$$u_n = o(v_n) \Leftrightarrow \exists \epsilon_n \text{ tel que } u_n = \epsilon_n v_n \text{ et } \epsilon_n \underset{n \to +\infty}{\longrightarrow} 0 \Leftrightarrow \epsilon_n = \frac{u_n}{v_n} \underset{n \to +\infty}{\longrightarrow} 0$$

2

Exemple 4. Vérifier que $n+2 = o((n+1)^2)$.

Propriété 1.4 : Négligeabilité et opérations

On considère deux suites (u_n) et (v_n) et on suppose que

$$u_n = o(v_n).$$

- (i) (Transitivité) Si de plus $v_n = o(w_n)$, alors $u_n = o(w_n)$.
- (ii) (Produit) Si de plus $a_n = o(b_n)$, alors $u_n a_n = o(v_n b_n)$.
- (iii) (Combinaison linéaire) Si de plus $a_n = o(v_n)$, alors $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\lambda u_n + \mu a_n = o(v_n)$.
- (iv) (Multiplication par une suite) Si (w_n) est une suite réelle, alors $u_n w_n = o(v_n w_n)$.
- (v) (Multiplication par un réel non nul) Si $\lambda \in \mathbb{R}^*$, alors $\lambda u_n = o(v_n)$.
- (vi) (Inverse) Si $u_n \neq 0$ et $v_n \neq 0$ à partir d'un certain rang, alors $\frac{1}{v_n} \underset{+\infty}{=} o\left(\frac{1}{u_n}\right)$.

Démonstration. Si $u_n = o(v_n)$, alors $\exists (\epsilon_n)$ tel que $u_n = \epsilon_n v_n$ et $\epsilon_n \xrightarrow[n \to +\infty]{} 0$,

- (i) Comme $v_n = o(w_n)$, alors $\exists (\epsilon'_n)$ tel que $v_n = \epsilon'_n w_n$ et $\epsilon'_n \xrightarrow[n \to +\infty]{} 0$. On pose $\mu_n = \epsilon_n \epsilon'_n$, on a $u_n = \mu_n w_n$ et $\mu_n \xrightarrow[n \to +\infty]{} 0$. Ainsi $u_n = o(w_n)$.
- (ii) Comme $a_n = o(b_n)$, alors $\exists (\epsilon'_n)$ tel que $a_n = \epsilon'_n b_n$ et $\epsilon'_n \xrightarrow[n \to +\infty]{} 0$. On pose $\mu_n = \epsilon_n \epsilon'_n$, on a $u_n a_n = \mu_n v_n b_n$ et $\mu_n \xrightarrow[n \to +\infty]{} 0$. Ainsi $u_n a_n = o(v_n b_n)$.
- (iii) Comme $a_n = o(v_n)$, alors $\exists \epsilon'_n$ tel que $a_n = \epsilon'_n v_n$ et $\epsilon'_n \underset{n \to +\infty}{\longrightarrow} 0$. Soit $(\lambda, \mu) \in \mathbb{R}^2$, on pose $E_n = \lambda \epsilon_n + \mu \epsilon'_n$, on a $\lambda u_n + \mu a_n = \lambda \epsilon_n v_n + \mu \epsilon'_n v_n = E_n v_n$ et $E_n \underset{n \to +\infty}{\longrightarrow} 0$. Ainsi $\lambda u_n + \mu a_n = o(v_n)$.

(iv), (v) et (vi) sont à démontrer en exercice.

Exemple 5. Comme $n+2 = o((n+1)^2)$ et $(n+1)^2 = o(n^3)$, alors

$$n+2 = o\left(n^3\right).$$

Exemple 6. On a

$$o\left(5n^2\right) \underset{+\infty}{=} 5 o\left(n^2\right) \underset{+\infty}{=} o\left(n^2\right).$$

Exemple 7. On a

$$n o\left(\frac{1}{n^2}\right) \underset{+\infty}{=} o\left(\frac{1}{n}\right).$$

Exemple 8. Montrer que $3n + 2 = o(n^2)$.

1.2 Relation d'équivalence

Définition 1.5 : Suites équivalentes

Les suites (u_n) et (v_n) sont dites **équivalentes** s'il existe une suite (α_n) qui converge vers 1 et qui vérifie à partir d'un certain rang

$$u_n = \alpha_n v_n$$
.

On note : $u_n \underset{+\infty}{\sim} v_n$ ou $u_n \underset{n \to +\infty}{\sim} v_n$.

On lit (u_n) est équivalente à (v_n) au voisinage de $+\infty$.

Théorème 1.6 : Caractérisation de l'équivalence

Soient deux suites (u_n) et (v_n) . On a :

$$u_n \underset{+\infty}{\sim} v_n \quad \Leftrightarrow \quad u_n \underset{+\infty}{=} v_n + o(v_n).$$

Si $v_n \neq 0$ à partir d'un certain rang, alors $u_n \underset{+\infty}{\sim} v_n \Leftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

Démonstration. On a

$$u_n \underset{+\infty}{\sim} v_n \quad \Leftrightarrow \quad \exists \alpha_n \text{ tel que } u_n = \alpha_n v_n \text{ et } \alpha_n \underset{n \to +\infty}{\longrightarrow} 1$$

On pose $\epsilon_n = \alpha_n - 1$,

$$u_n \underset{+\infty}{\sim} v_n \quad \Leftrightarrow \quad \exists \epsilon_n \text{ tel que } u_n = (1 + \epsilon_n) v_n = v_n + \epsilon_n v_n \text{ et } \epsilon_n = \alpha_n - 1 \underset{n \to +\infty}{\longrightarrow} 0 \quad \Leftrightarrow \quad u_n \underset{+\infty}{=} v_n + o(v_n).$$

Si $v_n \neq 0$ à partir d'un certain rang, on peut écrire :

$$u_n \underset{+\infty}{\sim} v_n \quad \Leftrightarrow \quad u_n \underset{+\infty}{=} v_n + o(v_n) \quad \Leftrightarrow \quad \frac{u_n}{v_n} \underset{+\infty}{=} \frac{v_n + o(v_n)}{v_n} \quad \Leftrightarrow \quad \frac{u_n}{v_n} \underset{+\infty}{=} 1 + \frac{o(v_n)}{v_n} \underset{n \to +\infty}{\longrightarrow} 1.$$

Exemple 9. $e^n + n^2 \underset{+\infty}{\sim} e^n$, $car \lim_{n \to +\infty} \frac{e^n + n^2}{e^n} = \lim_{n \to +\infty} \left(1 + \frac{n^2}{e^n}\right) = 1$.

Propriété 1.7 : Équivalence et opérations

On considère deux suites (u_n) et (v_n) et on suppose que

$$u_n \underset{+\infty}{\sim} v_n$$

- (i) (Symétrie) On a $v_n \sim u_n$.
- (ii) (Transitivité) Si de plus $v_n \underset{+\infty}{\sim} w_n$, alors $u_n \underset{+\infty}{\sim} w_n$.
- (iii) (Produit) Si de plus $a_n \underset{+\infty}{\sim} b_n$, alors $u_n a_n \underset{+\infty}{\sim} v_n b_n$.
- (iv) (Multiplication par une suite) Si (w_n) est une suite réelle, alors $u_n w_n \sim v_n w_n$.
- (v) (Puissance) Si $u_n \neq 0$ et $v_n \neq 0$ à partir d'un certain rang, alors pour tout $\alpha \in \mathbb{R}$, on a : $u_n^{\alpha} \underset{+\infty}{\sim} v_n^{\alpha}$.

Démonstration. À démontrer en exercice.

Exemple 10. Donner un équivalent de $(e^n + n^2)^3$.

Remarque 1.8 : Opérations interdites sur les équivalents

On retiendra les trois interdits sur les équivalents :

- Une suite ne peut pas être équivalente à zéro.
- On ne peut pas sommer dans les équivalents.
- On ne peut pas composer dans les équivalents.

Exemple 11. $n^2 + n \sim n^2$ et $-n^2 + n \sim -n^2$, mais $(n^2 + n) + (-n^2 + n) = 2n$ n'est pas équivalent à 0.

Exemple 12. $n+1 \underset{+\infty}{\sim} n$, en composant par $x \mapsto e^x$, e^{n+1} n'est pas équivalent à e^n car

$$\frac{e^{n+1}}{e^n} = e \underset{n \to +\infty}{\longrightarrow} e \neq 1.$$

Propriété 1.9 : Equivalence et négligeabilité

On considère deux suites (u_n) et (v_n) et on suppose que

$$u_n = o(v_n).$$

- (i) On a alors $v_n + u_n \sim v_n$.
- (ii) Si de plus $v_n \underset{+\infty}{\sim} w_n$, alors $u_n = o(w_n)$.
- (iii) Si de plus $u_n \sim w_n$, alors $w_n = o(v_n)$.

Exemple 13. $n+1 \underset{+\infty}{\sim} n$ et $n = o(n^2)$ donc $n+1 = o(n^2)$.

Proposition 1.10 : Limite et équivalence

On considère deux suites (u_n) et (v_n) .

- (i) Si $u_n \underset{+\infty}{\sim} v_n$ et si $v_n \underset{n \to +\infty}{\longrightarrow} l$, alors $u_n \underset{n \to +\infty}{\longrightarrow} l$.
- (ii) Soit *l* un réel non nul.

$$u_n \xrightarrow[n \to +\infty]{} l \quad \Leftrightarrow \quad u_n \underset{+\infty}{\sim} l.$$

1.3 Comparaison de suites usuelles

Proposition 1.11: Equivalents et polynômes

Soit
$$P(n) = \sum_{k=0}^{p} a_k n^k = a_p n^p + a_{p-1} n^{p-1} + \dots + a_1 n + a_0$$
 avec $a_p \neq 0$. Alors

$$P(n) \underset{+\infty}{\sim} a_p n^p$$
.

5

Exemple 14. On $a (2n+3)^4 \sim_{+\infty} 16 n^4$.

On peut réécrire les limites de type "croissance comparée" en terme de négligeabilité.

Proposition 1.12 : Croissances comparées

Soient a et b deux réels strictement positifs et q > 1. On a les propositions suivantes :

- (i) $(\ln(n))^b = o(n^a)$.
- (ii) $n^a = o\left(e^{bn}\right)$. Plus généralement, $n^a = o\left(q^n\right)$.
- (iii) $q^n = o(n!)$.
- (iv) Si a < b, alors $n^a = o(n^b)$ et $\frac{1}{n^b} = o(\frac{1}{n^a})$.

Proposition 1.13 : Equivalents usuels

Soit une suite (u_n) telle que $\lim_{n\to+\infty}u_n=0$. On a les équivalents suivants pour $\alpha\neq 0$:

$$\ln(1+u_n) \underset{+\infty}{\sim} u_n \qquad e^{u_n} - 1 \underset{+\infty}{\sim} u_n \qquad (1+u_n)^{\alpha} - 1 \underset{+\infty}{\sim} \alpha u_n$$

$$\sin(u_n) \underset{+\infty}{\sim} u_n \qquad \tan(u_n) \underset{+\infty}{\sim} u_n \qquad 1 - \cos(u_n) \underset{+\infty}{\sim} \frac{u_n^2}{2}$$

 $D\acute{e}monstration$. On reprend la proposition sur les limites usuelles venant de taux d'accroissement du chapitre Généralités sur les fonctions réelles.

Exemple 15. Donner un équivalent de $\ln \left(2 - e^{-\frac{1}{n^2}}\right)$.

Solution.

Méthode 1.14 : Comment trouver un équivalent directement ?

Il est souvent très intéressant de factoriser par le facteur prépondérant puis éventuellement simplifier (en cas de fraction).

Exemple 16. Soit $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}^*$, $u_n=n-(\ln n)^2$. Donner un équivalent de u_n .

Solution.

Méthode 1.15 : Comment étudier la nature d'une suite à l'aide d'équivalents?

Si $u_n \underset{+\infty}{\sim} v_n$ et si la suite $(v_n)_{n \in \mathbb{N}}$ a une limite, alors la suite $(u_n)_{n \in \mathbb{N}}$ a la même limite.

Exemple 17. Soit $k \in \mathbb{N}$ fixé. Calculer la limite de $\frac{\binom{n}{k}}{n^k}$ lorsque n tend vers $+\infty$.

2 Comparaison des fonctions au voisinage d'un point

Dans cette section, a désigne un réel, ou $-\infty$, ou $+\infty$.

2.1 Rappels sur les voisinages

Définition 2.1 : Voisinage d'un point

Si $a \in \mathbb{R}$, on appelle **voisinage** de a tout intervalle du type

$$V_a =]a - h, a + h[$$
 avec $h > 0$.

On appelle **voisinage à gauche** de a tout intervalle du type]a - h, a[avec h > 0. On appelle **voisinage à droite** de a tout intervalle du type]a, a + h[avec h > 0.

Définition 2.2 : Propriété locale au voisinage d'un point

Une proposition $\mathcal{P}(x)$, dépendant de x, est dite vraie au voisinage d'un point $a \in \mathbb{R}$ si

$$\exists h > 0, \quad \forall x \in]a - h, a + h[, \quad \mathcal{P}(x) \text{ est vraie }.$$

Définition 2.3 : Voisinage de l'infini

On appelle voisinage de $+\infty$ tout intervalle du type

$$V =]A, +\infty[$$
 avec $A \in \mathbb{R}$.

On appelle **voisinage de** $-\infty$ tout intervalle du type

$$V =]-\infty, A[$$
 avec $A \in \mathbb{R}$.

Définition 2.4 : Propriété locale au voisinage de l'infini

• Une proposition $\mathcal{P}(x)$, dépendant de x, est dite vraie au voisinage de $+\infty$ si

$$\exists A \in \mathbb{R}, \quad \forall x > A, \quad \mathcal{P}(x) \text{ est vrais }.$$

• Une proposition $\mathcal{P}(x)$, dépendant de x, est dite vraie au voisinage de $-\infty$ si

$$\exists A \in \mathbb{R}, \quad \forall x < A, \quad \mathcal{P}(x) \text{ est vrais }.$$

2.2 Relation de négligeabilité

Définition 2.5 : Fonction négligeable devant une autre fonction

Soient deux fonctions f et g définies au voisinage de a. On dit que f est **négligeable** devant g au voisinage de a s'il existe une fonction ϵ définie au voisinage de a qui vérifie au voisinage de a

$$f(x) = \epsilon(x)g(x)$$
 et $\epsilon(x) \xrightarrow[x \to a]{} 0$.

On note : f(x) = o(g(x)).

On lit f(x) est un "petit o" de g(x) lorsque x est au voisinage de a.

Exemple 18. Vérifier que $x^2 = o(x)$.

Solution.

Exemple 19. Soit $a \in \mathbb{R}$. Une fonction f qui vérifie f(x) = o(1) signifie que $f(x) \xrightarrow[x \to a]{} 0$.

Comme pour les suites, la notation de Landau ("petit o") repose sur un abus d'écriture : o(g) ne désigne pas une fonction particulière au voisinage de a, mais toute fonction possédant la propriété d'être négligeable devant g au voisinage de a. Si f(x) = o(g(x)) et h(x) = o(g(x)), on n'a pas nécessairement f(x) = h(x) au voisinage de a.

Théorème 2.6 : Caractérisation de la négligeabilité

Si g ne s'annule pas au voisinage de a sauf éventuellement en a, alors

$$f(x) \stackrel{=}{=} o(g(x)) \quad \Leftrightarrow \quad \lim_{\substack{x \to a \\ x \neq a}} \frac{f(x)}{g(x)} = 0.$$

 $D\acute{e}monstration$. Puisque g ne s'annule pas au voisinage de a, on peut écrire :

$$f(x) = o(g(x)) \Leftrightarrow \exists \epsilon \text{ tel que } f(x) = \epsilon(x)g(x) \text{ au voisinage de } a \text{ et } \epsilon(x) \underset{x \to a}{\to} 0 \Leftrightarrow \epsilon(x) = \frac{f(x)}{g(x)} \underset{x \neq a}{\to} 0$$

Exemple 20. Vérifier que $e^x + x = o(e^{2x})$.

Solution.

Exemple 21. Vérifier que $x^3 + x^2 = o(x)$.

Solution.

Propriété 2.7 : Négligeabilité et opérations

On considère deux fonctions f et g définies au voisinage de a et on suppose que

$$f(x) = o(g(x)).$$

- (i) (Transitivité) Si de plus g(x) = o(h(x)), alors f(x) = o(h(x)).
- (ii) (Produit) Si de plus $\varphi(x) = o(\psi(x))$, alors $f(x)\varphi(x) = o(g(x)\psi(x))$.
- (iii) (Combinaison linéaire) Si de plus $\varphi(x) = o(g(x))$, alors $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\lambda f(x) + \mu \varphi(x) = o(g(x))$.
- (iv) (Multiplication par une fonction) Si h est une fonction définie au voisinage de a, alors

$$f(x)h(x) = o(g(x)h(x)).$$

- (v) (Multiplication par un réel non nul) Si $\lambda \in \mathbb{R}^*$, alors $\lambda f(x) = o(g(x))$.
- (vi) (Inverse) Si f et g ne s'annulent pas au voisinage de a sauf éventuellement en a, alors

$$\frac{1}{g(x)} = o\left(\frac{1}{f(x)}\right).$$

Exemple 22. On observe que d'après le point (iii), on a

$$o\left(x^2\right) - o\left(x^2\right) \stackrel{=}{=} o\left(x^2\right).$$

2.3 Relation d'équivalence

Définition 2.8 : Fonctions équivalentes

Soient deux fonctions f et g définies au voisinage de a. On dit que f et g sont **équivalentes** au voisinage de a s'il existe une fonction α définie au voisinage de a qui vérifie au voisinage de a

$$f(x) = \alpha(x)g(x)$$
 et $\alpha(x) \xrightarrow[x \to a]{} 1$.

On note : $f(x) \sim_a g(x)$.

On lit f(x) est équivalent à g(x) lorsque x est au voisinage de a.

Exemple 23. $x + x^2 \sim x$ avec $\alpha(x) = 1 + x$.

Théorème 2.9 : Caractérisation de l'équivalence

Soient deux fonctions f et g définies au voisinage de a. On a :

$$f(x) \underset{a}{\sim} g(x) \quad \Leftrightarrow \quad f(x) \underset{a}{=} g(x) + o(g(x)).$$

Si g ne s'annule pas au voisinage de a sauf éventuellement en a, alors

$$f(x) \underset{a}{\sim} g(x) \quad \Leftrightarrow \quad \lim_{\substack{x \to a \\ x \neq a}} \frac{f(x)}{g(x)} = 1.$$

Exemple 24.
$$\frac{x^2+1}{x^5} \underset{+\infty}{\sim} \frac{1}{x^3}$$
, $car \lim_{x \to +\infty} \frac{\frac{x^2+1}{x^5}}{\frac{1}{x^3}} = \lim_{x \to +\infty} \frac{x^5+x^3}{x^5} = \lim_{x \to +\infty} \left(1+\frac{1}{x^2}\right) = 1$.

Exemple 25. $x^2 - 5x + 6 \underset{3}{\sim} x - 3$, $car \lim_{\substack{x \to 3 \ x \neq 3}} \frac{x^2 - 5x + 6}{x - 3} = \lim_{\substack{x \to 3 \ x \neq 3}} \frac{(x - 2)(x - 3)}{x - 3} = \lim_{\substack{x \to 3 \ x \neq 3}} (x - 2) = 1$.

Propriété 2.10 : Équivalence et opérations

On considère deux fonctions f et g définies au voisinage de a, on suppose que

$$f(x) \sim g(x)$$

- (i) (Symétrie) On a $g(x) \sim f(x)$.
- (ii) (Transitivité) Si de plus $g(x) \sim h(x)$, alors $f(x) \sim h(x)$.
- (iii) (Produit) Si de plus $\varphi(x) \underset{a}{\sim} \psi(x)$, alors $f(x)\varphi(x) \underset{a}{\sim} g(x)\psi(x)$.
- (iv) (Multiplication par une fonction) Si h est une fonction définie au voisinage de a, alors

$$f(x)h(x) \sim g(x)h(x)$$
.

(v) (Puissance) Si f et g ne s'annulent pas au voisinage de a sauf éventuellement en a, alors pour tout $\alpha \in \mathbb{R}$, on a : $f(x)^{\alpha} \sim g(x)^{\alpha}$.

Remarque 2.11 : Opérations interdites sur les équivalents

On retiendra les trois interdits sur les équivalents :

- Une fonction ne peut pas être équivalente à zéro.
- On ne peut pas sommer dans les équivalents.
- On ne peut pas composer dans les équivalents.

Exemple 26. $x^2 + 1 \underset{+\infty}{\sim} x^2$, cependant $(x^2 + 1) + (-x^2) = 1$ n'est pas équivalent à 0.

Exemple 27. $\frac{1}{x} \sim 1 + \frac{1}{x}$, cependant $e^{\frac{1}{x}}$ et $e^{1+\frac{1}{x}}$ ne sont pas équivalents au voisinage de 0, en effet

$$\frac{e^{\frac{1}{x}}}{e^{1+\frac{1}{x}}} = e^{\frac{1}{x}-1-\frac{1}{x}} = e^{-1} \underset{x \neq 0}{\longrightarrow} e^{-1} \neq 1.$$

Propriété 2.12 : Equivalence et négligeabilité

On considère deux fonctions f et g définies au voisinage de a, on suppose que

$$f(x) = o(g(x))$$

- (i) On a alors $g(x) + f(x) \sim g(x)$.
- (ii) Si de plus $g(x) \sim h(x)$, alors f(x) = o(h(x)).
- (iii) Si de plus $f(x) \sim h(x)$, alors h(x) = o(g(x)).

Proposition 2.13 : Limite et équivalence

Soient deux fonctions f et g définies au voisinage de a. Si $f(x) \sim g(x)$ et si $f(x) \xrightarrow[x \to a]{} l$, alors

$$g(x) \xrightarrow[x \to a]{} l.$$

2.4 Comparaison de fonctions usuelles

Proposition 2.14: Equivalents et polynômes

- Un polynôme non nul est équivalent au voisinage de 0 à son monôme de plus bas degré.
- Un polynôme non nul est équivalent au voisinage de $\pm \infty$ à son monôme de plus haut degré.

Exemple 28. On $a: x^3 - 2x^2 + 5x \sim x^3$ et $x^3 - 2x^2 + 5x \sim 5x$.

2.4.1 Comparaison au voisinage de l'infini

Proposition 2.15 : Croissances comparées au voisinage de $+\infty$

Soient a et b deux réels strictement positifs. On a les propositions suivantes :

- (i) $(\ln(x))^b = o(x^a)$.
- (ii) $x^a = o(e^{bx}).$
- (iii) Si a < b, alors $x^a = o(x^b)$.

Exemple 29. On $a: x^3 = o(x^5)$ et $\ln(x) = o(\sqrt{x})$.

2.4.2 Comparaison au voisinage de zéro

Les notions suivantes seront très importantes pour le chapitre Formules de Taylor et développements limités.

Proposition 2.16 : Croissances comparées au voisinage de 0

Soient a et b deux réels strictement positifs. On a les propositions suivantes :

- (i) $(\ln(x))^b = o\left(\frac{1}{x^a}\right)$.
- (ii) Si a < b, alors $x^b = o(x^a)$.

Exemple 30. On $a: x^5 = o(x^3)$ et $\ln(x) = o\left(\frac{1}{\sqrt{x}}\right)$.

Exemple 31. Pour a et b deux réels strictement positifs, avec le propriété 2.7, on a

$$x^{b}o\left(x^{a}\right) \stackrel{=}{=} o\left(x^{a+b}\right)$$

Proposition 2.17: Equivalents usuels au voisinage de 0

On a les équivalents suivants pour $\alpha \neq 0$:

$$\ln(1+x) \sim x$$
 $e^x - 1 \sim x$ $(1+x)^{\alpha} - 1 \sim \alpha x$

$$\sin(x) \underset{0}{\sim} x \qquad \tan(x) \underset{0}{\sim} x \qquad 1 - \cos(x) \underset{0}{\sim} \frac{x^2}{2}$$

Méthode 2.18 : Comment calculer une limite à l'aide d'équivalents?

Si deux fonctions sont équivalentes au voisinage de a, alors elles ont le même comportement au voisinage de a.

Exemple 32. Calculer la limite de $\sqrt{x} \ln \left(1 + \frac{1}{x}\right)$ lorsque x tend vers $+\infty$.